Copied to
clipboard

G = C32:11SD16order 144 = 24·32

2nd semidirect product of C32 and SD16 acting via SD16/Q8=C2

metabelian, supersoluble, monomial

Aliases: C12.18D6, C32:11SD16, (C3xQ8):3S3, Q8:2(C3:S3), (C3xC6).36D4, C32:4C8:5C2, (Q8xC32):2C2, C12:S3.3C2, C3:3(Q8:2S3), C6.24(C3:D4), (C3xC12).14C22, C2.6(C32:7D4), C4.3(C2xC3:S3), SmallGroup(144,98)

Series: Derived Chief Lower central Upper central

C1C3xC12 — C32:11SD16
C1C3C32C3xC6C3xC12C12:S3 — C32:11SD16
C32C3xC6C3xC12 — C32:11SD16
C1C2C4Q8

Generators and relations for C32:11SD16
 G = < a,b,c,d | a3=b3=c8=d2=1, ab=ba, cac-1=dad=a-1, cbc-1=dbd=b-1, dcd=c3 >

Subgroups: 234 in 60 conjugacy classes, 27 normal (11 characteristic)
C1, C2, C2, C3, C4, C4, C22, S3, C6, C8, D4, Q8, C32, C12, C12, D6, SD16, C3:S3, C3xC6, C3:C8, D12, C3xQ8, C3xC12, C3xC12, C2xC3:S3, Q8:2S3, C32:4C8, C12:S3, Q8xC32, C32:11SD16
Quotients: C1, C2, C22, S3, D4, D6, SD16, C3:S3, C3:D4, C2xC3:S3, Q8:2S3, C32:7D4, C32:11SD16

Character table of C32:11SD16

 class 12A2B3A3B3C3D4A4B6A6B6C6D8A8B12A12B12C12D12E12F12G12H12I12J12K12L
 size 113622222422221818444444444444
ρ1111111111111111111111111111    trivial
ρ211-111111-11111111-1-1-1-1-1-1-1-1111    linear of order 2
ρ311111111-11111-1-11-1-1-1-1-1-1-1-1111    linear of order 2
ρ411-11111111111-1-1111111111111    linear of order 2
ρ5220-1-12-122-1-1-1200222-1-1-1-1-1-1-1-1-1    orthogonal lifted from S3
ρ62202-1-1-122-12-1-100-1-1-1-12-1-1-12-12-1    orthogonal lifted from S3
ρ72202222-20222200-200000000-2-2-2    orthogonal lifted from D4
ρ8220-1-12-12-2-1-1-12002-2-2111111-1-1-1    orthogonal lifted from D6
ρ9220-12-1-12-2-1-12-100-11111-21-21-1-12    orthogonal lifted from D6
ρ10220-1-1-12222-1-1-100-1-1-12-1-12-1-12-1-1    orthogonal lifted from S3
ρ112202-1-1-12-2-12-1-100-1111-2111-2-12-1    orthogonal lifted from D6
ρ12220-1-1-122-22-1-1-100-111-211-2112-1-1    orthogonal lifted from D6
ρ13220-12-1-122-1-12-100-1-1-1-1-12-12-1-1-12    orthogonal lifted from S3
ρ14220-12-1-1-20-1-12-1001-3--3-3--30--30-311-2    complex lifted from C3:D4
ρ152202-1-1-1-20-12-1-1001--3-3-30--3--3-301-21    complex lifted from C3:D4
ρ16220-1-12-1-20-1-1-1200-200--3--3--3-3-3-3111    complex lifted from C3:D4
ρ17220-12-1-1-20-1-12-1001--3-3--3-30-30--311-2    complex lifted from C3:D4
ρ18220-1-1-12-202-1-1-1001-3--30-3--30-3--3-211    complex lifted from C3:D4
ρ192202-1-1-1-20-12-1-1001-3--3--30-3-3--301-21    complex lifted from C3:D4
ρ20220-1-1-12-202-1-1-1001--3-30--3-30--3-3-211    complex lifted from C3:D4
ρ21220-1-12-1-20-1-1-1200-200-3-3-3--3--3--3111    complex lifted from C3:D4
ρ222-20222200-2-2-2-2--2-2000000000000    complex lifted from SD16
ρ232-20222200-2-2-2-2-2--2000000000000    complex lifted from SD16
ρ244-40-2-24-200222-400000000000000    orthogonal lifted from Q8:2S3
ρ254-40-2-2-2400-422200000000000000    orthogonal lifted from Q8:2S3
ρ264-40-24-2-20022-4200000000000000    orthogonal lifted from Q8:2S3
ρ274-404-2-2-2002-42200000000000000    orthogonal lifted from Q8:2S3

Smallest permutation representation of C32:11SD16
On 72 points
Generators in S72
(1 56 71)(2 72 49)(3 50 65)(4 66 51)(5 52 67)(6 68 53)(7 54 69)(8 70 55)(9 40 57)(10 58 33)(11 34 59)(12 60 35)(13 36 61)(14 62 37)(15 38 63)(16 64 39)(17 30 48)(18 41 31)(19 32 42)(20 43 25)(21 26 44)(22 45 27)(23 28 46)(24 47 29)
(1 41 15)(2 16 42)(3 43 9)(4 10 44)(5 45 11)(6 12 46)(7 47 13)(8 14 48)(17 70 62)(18 63 71)(19 72 64)(20 57 65)(21 66 58)(22 59 67)(23 68 60)(24 61 69)(25 40 50)(26 51 33)(27 34 52)(28 53 35)(29 36 54)(30 55 37)(31 38 56)(32 49 39)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)
(2 4)(3 7)(6 8)(9 47)(10 42)(11 45)(12 48)(13 43)(14 46)(15 41)(16 44)(17 35)(18 38)(19 33)(20 36)(21 39)(22 34)(23 37)(24 40)(25 61)(26 64)(27 59)(28 62)(29 57)(30 60)(31 63)(32 58)(49 66)(50 69)(51 72)(52 67)(53 70)(54 65)(55 68)(56 71)

G:=sub<Sym(72)| (1,56,71)(2,72,49)(3,50,65)(4,66,51)(5,52,67)(6,68,53)(7,54,69)(8,70,55)(9,40,57)(10,58,33)(11,34,59)(12,60,35)(13,36,61)(14,62,37)(15,38,63)(16,64,39)(17,30,48)(18,41,31)(19,32,42)(20,43,25)(21,26,44)(22,45,27)(23,28,46)(24,47,29), (1,41,15)(2,16,42)(3,43,9)(4,10,44)(5,45,11)(6,12,46)(7,47,13)(8,14,48)(17,70,62)(18,63,71)(19,72,64)(20,57,65)(21,66,58)(22,59,67)(23,68,60)(24,61,69)(25,40,50)(26,51,33)(27,34,52)(28,53,35)(29,36,54)(30,55,37)(31,38,56)(32,49,39), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72), (2,4)(3,7)(6,8)(9,47)(10,42)(11,45)(12,48)(13,43)(14,46)(15,41)(16,44)(17,35)(18,38)(19,33)(20,36)(21,39)(22,34)(23,37)(24,40)(25,61)(26,64)(27,59)(28,62)(29,57)(30,60)(31,63)(32,58)(49,66)(50,69)(51,72)(52,67)(53,70)(54,65)(55,68)(56,71)>;

G:=Group( (1,56,71)(2,72,49)(3,50,65)(4,66,51)(5,52,67)(6,68,53)(7,54,69)(8,70,55)(9,40,57)(10,58,33)(11,34,59)(12,60,35)(13,36,61)(14,62,37)(15,38,63)(16,64,39)(17,30,48)(18,41,31)(19,32,42)(20,43,25)(21,26,44)(22,45,27)(23,28,46)(24,47,29), (1,41,15)(2,16,42)(3,43,9)(4,10,44)(5,45,11)(6,12,46)(7,47,13)(8,14,48)(17,70,62)(18,63,71)(19,72,64)(20,57,65)(21,66,58)(22,59,67)(23,68,60)(24,61,69)(25,40,50)(26,51,33)(27,34,52)(28,53,35)(29,36,54)(30,55,37)(31,38,56)(32,49,39), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72), (2,4)(3,7)(6,8)(9,47)(10,42)(11,45)(12,48)(13,43)(14,46)(15,41)(16,44)(17,35)(18,38)(19,33)(20,36)(21,39)(22,34)(23,37)(24,40)(25,61)(26,64)(27,59)(28,62)(29,57)(30,60)(31,63)(32,58)(49,66)(50,69)(51,72)(52,67)(53,70)(54,65)(55,68)(56,71) );

G=PermutationGroup([[(1,56,71),(2,72,49),(3,50,65),(4,66,51),(5,52,67),(6,68,53),(7,54,69),(8,70,55),(9,40,57),(10,58,33),(11,34,59),(12,60,35),(13,36,61),(14,62,37),(15,38,63),(16,64,39),(17,30,48),(18,41,31),(19,32,42),(20,43,25),(21,26,44),(22,45,27),(23,28,46),(24,47,29)], [(1,41,15),(2,16,42),(3,43,9),(4,10,44),(5,45,11),(6,12,46),(7,47,13),(8,14,48),(17,70,62),(18,63,71),(19,72,64),(20,57,65),(21,66,58),(22,59,67),(23,68,60),(24,61,69),(25,40,50),(26,51,33),(27,34,52),(28,53,35),(29,36,54),(30,55,37),(31,38,56),(32,49,39)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72)], [(2,4),(3,7),(6,8),(9,47),(10,42),(11,45),(12,48),(13,43),(14,46),(15,41),(16,44),(17,35),(18,38),(19,33),(20,36),(21,39),(22,34),(23,37),(24,40),(25,61),(26,64),(27,59),(28,62),(29,57),(30,60),(31,63),(32,58),(49,66),(50,69),(51,72),(52,67),(53,70),(54,65),(55,68),(56,71)]])

C32:11SD16 is a maximal subgroup of
S3xQ8:2S3  D12:6D6  Dic6.22D6  D12.13D6  SD16xC3:S3  C24:7D6  C24.35D6  C24.28D6  C62.134D4  C62.73D4  C62.74D4  He3:10SD16  C36.20D6  C32.3GL2(F3)  C33:13SD16  C33:15SD16  C33:27SD16  C32:5GL2(F3)
C32:11SD16 is a maximal quotient of
C12.10Dic6  C62.113D4  C62.117D4  C36.20D6  He3:11SD16  C33:13SD16  C33:15SD16  C33:27SD16

Matrix representation of C32:11SD16 in GL6(F73)

010000
72720000
00727200
001000
000010
000001
,
100000
010000
000100
00727200
000010
000001
,
100000
72720000
00431300
00433000
00006155
000040
,
100000
72720000
0072000
001100
000010
00004872

G:=sub<GL(6,GF(73))| [0,72,0,0,0,0,1,72,0,0,0,0,0,0,72,1,0,0,0,0,72,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,72,0,0,0,0,1,72,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,72,0,0,0,0,0,72,0,0,0,0,0,0,43,43,0,0,0,0,13,30,0,0,0,0,0,0,61,4,0,0,0,0,55,0],[1,72,0,0,0,0,0,72,0,0,0,0,0,0,72,1,0,0,0,0,0,1,0,0,0,0,0,0,1,48,0,0,0,0,0,72] >;

C32:11SD16 in GAP, Magma, Sage, TeX

C_3^2\rtimes_{11}{\rm SD}_{16}
% in TeX

G:=Group("C3^2:11SD16");
// GroupNames label

G:=SmallGroup(144,98);
// by ID

G=gap.SmallGroup(144,98);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-3,-3,73,55,218,116,50,964,3461]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^3=c^8=d^2=1,a*b=b*a,c*a*c^-1=d*a*d=a^-1,c*b*c^-1=d*b*d=b^-1,d*c*d=c^3>;
// generators/relations

Export

Character table of C32:11SD16 in TeX

׿
x
:
Z
F
o
wr
Q
<