metabelian, supersoluble, monomial
Aliases: C12.18D6, C32⋊11SD16, (C3×Q8)⋊3S3, Q8⋊2(C3⋊S3), (C3×C6).36D4, C32⋊4C8⋊5C2, (Q8×C32)⋊2C2, C12⋊S3.3C2, C3⋊3(Q8⋊2S3), C6.24(C3⋊D4), (C3×C12).14C22, C2.6(C32⋊7D4), C4.3(C2×C3⋊S3), SmallGroup(144,98)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C32⋊11SD16
G = < a,b,c,d | a3=b3=c8=d2=1, ab=ba, cac-1=dad=a-1, cbc-1=dbd=b-1, dcd=c3 >
Subgroups: 234 in 60 conjugacy classes, 27 normal (11 characteristic)
C1, C2, C2, C3, C4, C4, C22, S3, C6, C8, D4, Q8, C32, C12, C12, D6, SD16, C3⋊S3, C3×C6, C3⋊C8, D12, C3×Q8, C3×C12, C3×C12, C2×C3⋊S3, Q8⋊2S3, C32⋊4C8, C12⋊S3, Q8×C32, C32⋊11SD16
Quotients: C1, C2, C22, S3, D4, D6, SD16, C3⋊S3, C3⋊D4, C2×C3⋊S3, Q8⋊2S3, C32⋊7D4, C32⋊11SD16
Character table of C32⋊11SD16
class | 1 | 2A | 2B | 3A | 3B | 3C | 3D | 4A | 4B | 6A | 6B | 6C | 6D | 8A | 8B | 12A | 12B | 12C | 12D | 12E | 12F | 12G | 12H | 12I | 12J | 12K | 12L | |
size | 1 | 1 | 36 | 2 | 2 | 2 | 2 | 2 | 4 | 2 | 2 | 2 | 2 | 18 | 18 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 2 | 2 | 0 | -1 | -1 | 2 | -1 | 2 | 2 | -1 | -1 | -1 | 2 | 0 | 0 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ6 | 2 | 2 | 0 | 2 | -1 | -1 | -1 | 2 | 2 | -1 | 2 | -1 | -1 | 0 | 0 | -1 | -1 | -1 | -1 | 2 | -1 | -1 | -1 | 2 | -1 | 2 | -1 | orthogonal lifted from S3 |
ρ7 | 2 | 2 | 0 | 2 | 2 | 2 | 2 | -2 | 0 | 2 | 2 | 2 | 2 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | orthogonal lifted from D4 |
ρ8 | 2 | 2 | 0 | -1 | -1 | 2 | -1 | 2 | -2 | -1 | -1 | -1 | 2 | 0 | 0 | 2 | -2 | -2 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | orthogonal lifted from D6 |
ρ9 | 2 | 2 | 0 | -1 | 2 | -1 | -1 | 2 | -2 | -1 | -1 | 2 | -1 | 0 | 0 | -1 | 1 | 1 | 1 | 1 | -2 | 1 | -2 | 1 | -1 | -1 | 2 | orthogonal lifted from D6 |
ρ10 | 2 | 2 | 0 | -1 | -1 | -1 | 2 | 2 | 2 | 2 | -1 | -1 | -1 | 0 | 0 | -1 | -1 | -1 | 2 | -1 | -1 | 2 | -1 | -1 | 2 | -1 | -1 | orthogonal lifted from S3 |
ρ11 | 2 | 2 | 0 | 2 | -1 | -1 | -1 | 2 | -2 | -1 | 2 | -1 | -1 | 0 | 0 | -1 | 1 | 1 | 1 | -2 | 1 | 1 | 1 | -2 | -1 | 2 | -1 | orthogonal lifted from D6 |
ρ12 | 2 | 2 | 0 | -1 | -1 | -1 | 2 | 2 | -2 | 2 | -1 | -1 | -1 | 0 | 0 | -1 | 1 | 1 | -2 | 1 | 1 | -2 | 1 | 1 | 2 | -1 | -1 | orthogonal lifted from D6 |
ρ13 | 2 | 2 | 0 | -1 | 2 | -1 | -1 | 2 | 2 | -1 | -1 | 2 | -1 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | 2 | -1 | 2 | -1 | -1 | -1 | 2 | orthogonal lifted from S3 |
ρ14 | 2 | 2 | 0 | -1 | 2 | -1 | -1 | -2 | 0 | -1 | -1 | 2 | -1 | 0 | 0 | 1 | √-3 | -√-3 | √-3 | -√-3 | 0 | -√-3 | 0 | √-3 | 1 | 1 | -2 | complex lifted from C3⋊D4 |
ρ15 | 2 | 2 | 0 | 2 | -1 | -1 | -1 | -2 | 0 | -1 | 2 | -1 | -1 | 0 | 0 | 1 | -√-3 | √-3 | √-3 | 0 | -√-3 | -√-3 | √-3 | 0 | 1 | -2 | 1 | complex lifted from C3⋊D4 |
ρ16 | 2 | 2 | 0 | -1 | -1 | 2 | -1 | -2 | 0 | -1 | -1 | -1 | 2 | 0 | 0 | -2 | 0 | 0 | -√-3 | -√-3 | -√-3 | √-3 | √-3 | √-3 | 1 | 1 | 1 | complex lifted from C3⋊D4 |
ρ17 | 2 | 2 | 0 | -1 | 2 | -1 | -1 | -2 | 0 | -1 | -1 | 2 | -1 | 0 | 0 | 1 | -√-3 | √-3 | -√-3 | √-3 | 0 | √-3 | 0 | -√-3 | 1 | 1 | -2 | complex lifted from C3⋊D4 |
ρ18 | 2 | 2 | 0 | -1 | -1 | -1 | 2 | -2 | 0 | 2 | -1 | -1 | -1 | 0 | 0 | 1 | √-3 | -√-3 | 0 | √-3 | -√-3 | 0 | √-3 | -√-3 | -2 | 1 | 1 | complex lifted from C3⋊D4 |
ρ19 | 2 | 2 | 0 | 2 | -1 | -1 | -1 | -2 | 0 | -1 | 2 | -1 | -1 | 0 | 0 | 1 | √-3 | -√-3 | -√-3 | 0 | √-3 | √-3 | -√-3 | 0 | 1 | -2 | 1 | complex lifted from C3⋊D4 |
ρ20 | 2 | 2 | 0 | -1 | -1 | -1 | 2 | -2 | 0 | 2 | -1 | -1 | -1 | 0 | 0 | 1 | -√-3 | √-3 | 0 | -√-3 | √-3 | 0 | -√-3 | √-3 | -2 | 1 | 1 | complex lifted from C3⋊D4 |
ρ21 | 2 | 2 | 0 | -1 | -1 | 2 | -1 | -2 | 0 | -1 | -1 | -1 | 2 | 0 | 0 | -2 | 0 | 0 | √-3 | √-3 | √-3 | -√-3 | -√-3 | -√-3 | 1 | 1 | 1 | complex lifted from C3⋊D4 |
ρ22 | 2 | -2 | 0 | 2 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | -2 | -2 | -√-2 | √-2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from SD16 |
ρ23 | 2 | -2 | 0 | 2 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | -2 | -2 | √-2 | -√-2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from SD16 |
ρ24 | 4 | -4 | 0 | -2 | -2 | 4 | -2 | 0 | 0 | 2 | 2 | 2 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from Q8⋊2S3 |
ρ25 | 4 | -4 | 0 | -2 | -2 | -2 | 4 | 0 | 0 | -4 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from Q8⋊2S3 |
ρ26 | 4 | -4 | 0 | -2 | 4 | -2 | -2 | 0 | 0 | 2 | 2 | -4 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from Q8⋊2S3 |
ρ27 | 4 | -4 | 0 | 4 | -2 | -2 | -2 | 0 | 0 | 2 | -4 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from Q8⋊2S3 |
(1 56 71)(2 72 49)(3 50 65)(4 66 51)(5 52 67)(6 68 53)(7 54 69)(8 70 55)(9 40 57)(10 58 33)(11 34 59)(12 60 35)(13 36 61)(14 62 37)(15 38 63)(16 64 39)(17 30 48)(18 41 31)(19 32 42)(20 43 25)(21 26 44)(22 45 27)(23 28 46)(24 47 29)
(1 41 15)(2 16 42)(3 43 9)(4 10 44)(5 45 11)(6 12 46)(7 47 13)(8 14 48)(17 70 62)(18 63 71)(19 72 64)(20 57 65)(21 66 58)(22 59 67)(23 68 60)(24 61 69)(25 40 50)(26 51 33)(27 34 52)(28 53 35)(29 36 54)(30 55 37)(31 38 56)(32 49 39)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)
(2 4)(3 7)(6 8)(9 47)(10 42)(11 45)(12 48)(13 43)(14 46)(15 41)(16 44)(17 35)(18 38)(19 33)(20 36)(21 39)(22 34)(23 37)(24 40)(25 61)(26 64)(27 59)(28 62)(29 57)(30 60)(31 63)(32 58)(49 66)(50 69)(51 72)(52 67)(53 70)(54 65)(55 68)(56 71)
G:=sub<Sym(72)| (1,56,71)(2,72,49)(3,50,65)(4,66,51)(5,52,67)(6,68,53)(7,54,69)(8,70,55)(9,40,57)(10,58,33)(11,34,59)(12,60,35)(13,36,61)(14,62,37)(15,38,63)(16,64,39)(17,30,48)(18,41,31)(19,32,42)(20,43,25)(21,26,44)(22,45,27)(23,28,46)(24,47,29), (1,41,15)(2,16,42)(3,43,9)(4,10,44)(5,45,11)(6,12,46)(7,47,13)(8,14,48)(17,70,62)(18,63,71)(19,72,64)(20,57,65)(21,66,58)(22,59,67)(23,68,60)(24,61,69)(25,40,50)(26,51,33)(27,34,52)(28,53,35)(29,36,54)(30,55,37)(31,38,56)(32,49,39), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72), (2,4)(3,7)(6,8)(9,47)(10,42)(11,45)(12,48)(13,43)(14,46)(15,41)(16,44)(17,35)(18,38)(19,33)(20,36)(21,39)(22,34)(23,37)(24,40)(25,61)(26,64)(27,59)(28,62)(29,57)(30,60)(31,63)(32,58)(49,66)(50,69)(51,72)(52,67)(53,70)(54,65)(55,68)(56,71)>;
G:=Group( (1,56,71)(2,72,49)(3,50,65)(4,66,51)(5,52,67)(6,68,53)(7,54,69)(8,70,55)(9,40,57)(10,58,33)(11,34,59)(12,60,35)(13,36,61)(14,62,37)(15,38,63)(16,64,39)(17,30,48)(18,41,31)(19,32,42)(20,43,25)(21,26,44)(22,45,27)(23,28,46)(24,47,29), (1,41,15)(2,16,42)(3,43,9)(4,10,44)(5,45,11)(6,12,46)(7,47,13)(8,14,48)(17,70,62)(18,63,71)(19,72,64)(20,57,65)(21,66,58)(22,59,67)(23,68,60)(24,61,69)(25,40,50)(26,51,33)(27,34,52)(28,53,35)(29,36,54)(30,55,37)(31,38,56)(32,49,39), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72), (2,4)(3,7)(6,8)(9,47)(10,42)(11,45)(12,48)(13,43)(14,46)(15,41)(16,44)(17,35)(18,38)(19,33)(20,36)(21,39)(22,34)(23,37)(24,40)(25,61)(26,64)(27,59)(28,62)(29,57)(30,60)(31,63)(32,58)(49,66)(50,69)(51,72)(52,67)(53,70)(54,65)(55,68)(56,71) );
G=PermutationGroup([[(1,56,71),(2,72,49),(3,50,65),(4,66,51),(5,52,67),(6,68,53),(7,54,69),(8,70,55),(9,40,57),(10,58,33),(11,34,59),(12,60,35),(13,36,61),(14,62,37),(15,38,63),(16,64,39),(17,30,48),(18,41,31),(19,32,42),(20,43,25),(21,26,44),(22,45,27),(23,28,46),(24,47,29)], [(1,41,15),(2,16,42),(3,43,9),(4,10,44),(5,45,11),(6,12,46),(7,47,13),(8,14,48),(17,70,62),(18,63,71),(19,72,64),(20,57,65),(21,66,58),(22,59,67),(23,68,60),(24,61,69),(25,40,50),(26,51,33),(27,34,52),(28,53,35),(29,36,54),(30,55,37),(31,38,56),(32,49,39)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72)], [(2,4),(3,7),(6,8),(9,47),(10,42),(11,45),(12,48),(13,43),(14,46),(15,41),(16,44),(17,35),(18,38),(19,33),(20,36),(21,39),(22,34),(23,37),(24,40),(25,61),(26,64),(27,59),(28,62),(29,57),(30,60),(31,63),(32,58),(49,66),(50,69),(51,72),(52,67),(53,70),(54,65),(55,68),(56,71)]])
C32⋊11SD16 is a maximal subgroup of
S3×Q8⋊2S3 D12⋊6D6 Dic6.22D6 D12.13D6 SD16×C3⋊S3 C24⋊7D6 C24.35D6 C24.28D6 C62.134D4 C62.73D4 C62.74D4 He3⋊10SD16 C36.20D6 C32.3GL2(𝔽3) C33⋊13SD16 C33⋊15SD16 C33⋊27SD16 C32⋊5GL2(𝔽3)
C32⋊11SD16 is a maximal quotient of
C12.10Dic6 C62.113D4 C62.117D4 C36.20D6 He3⋊11SD16 C33⋊13SD16 C33⋊15SD16 C33⋊27SD16
Matrix representation of C32⋊11SD16 ►in GL6(𝔽73)
0 | 1 | 0 | 0 | 0 | 0 |
72 | 72 | 0 | 0 | 0 | 0 |
0 | 0 | 72 | 72 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 72 | 72 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
72 | 72 | 0 | 0 | 0 | 0 |
0 | 0 | 43 | 13 | 0 | 0 |
0 | 0 | 43 | 30 | 0 | 0 |
0 | 0 | 0 | 0 | 61 | 55 |
0 | 0 | 0 | 0 | 4 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
72 | 72 | 0 | 0 | 0 | 0 |
0 | 0 | 72 | 0 | 0 | 0 |
0 | 0 | 1 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 48 | 72 |
G:=sub<GL(6,GF(73))| [0,72,0,0,0,0,1,72,0,0,0,0,0,0,72,1,0,0,0,0,72,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,72,0,0,0,0,1,72,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,72,0,0,0,0,0,72,0,0,0,0,0,0,43,43,0,0,0,0,13,30,0,0,0,0,0,0,61,4,0,0,0,0,55,0],[1,72,0,0,0,0,0,72,0,0,0,0,0,0,72,1,0,0,0,0,0,1,0,0,0,0,0,0,1,48,0,0,0,0,0,72] >;
C32⋊11SD16 in GAP, Magma, Sage, TeX
C_3^2\rtimes_{11}{\rm SD}_{16}
% in TeX
G:=Group("C3^2:11SD16");
// GroupNames label
G:=SmallGroup(144,98);
// by ID
G=gap.SmallGroup(144,98);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-3,-3,73,55,218,116,50,964,3461]);
// Polycyclic
G:=Group<a,b,c,d|a^3=b^3=c^8=d^2=1,a*b=b*a,c*a*c^-1=d*a*d=a^-1,c*b*c^-1=d*b*d=b^-1,d*c*d=c^3>;
// generators/relations
Export